

AI IN CONTOURING FOR RADIOTHERAPY PLANNING

MEDICAL FIELD, OR MEDICAL METHOD

Radiotherapy

TYPE

✓ Decision support ☐ Autonomous decision making

CATEGORY

 \square Prevention \square Detection \square Diagnosis \square Treatment

✓ Other

DESCRIPTION

Radiotherapy treatment planning system connected to (cloud based) Al segmentation service.

AIM / PURPOSE

Contouring of organs at risk is a tedious, time consuming, still mostly manual preparation step for radiotherapy planning. Automatic detection speeds up the process and increases consistency.

OUTPUT / RESULTS

Successfully tested for efficiency increase for organs of head and neck, thorax, pelvis and abdomen. Solutions for additional

structures and continuous improvement under development.

AI METHODOLOGY

Modified U-Nets (convolutional deep neural networks) trained with hundreds to few thousands' clinical images with curated ground truth organ contours.

INPUT / SIZE OF THE DATA

Planning CT images. About 200 MB per volumetric image.

REFERENCE DOCUMENTS / LINKS / PUBLICATIONS

Schreier, J., Attanasi, F., & Laaksonen, H. (2019). A Full-Image deep Segmenter for CT images in breast cancer radiotherapy treatment. Frontiers in oncology, 9, 677.

Schreier, Jan. "Anatomical Segmentation of CT images for Radiation Therapy planning using Deep Learning." (2018).

Hänsch, Annika, et al. "Evaluation of deep learning methods for parotid gland segmentation from CT images." Journal of Medical Imaging 6.1 (2018): 011005.

SOURCE

Varian