

Forum 3 The future is now – AI as a driver of sustainable healthcare?

Wednesday, 3 October 2018 | 14.45-17.15 | Kursaal C

Co-organised by COCIR and EHFG With the kind support of Siemens Healthineers, Philips and GE Healthcare

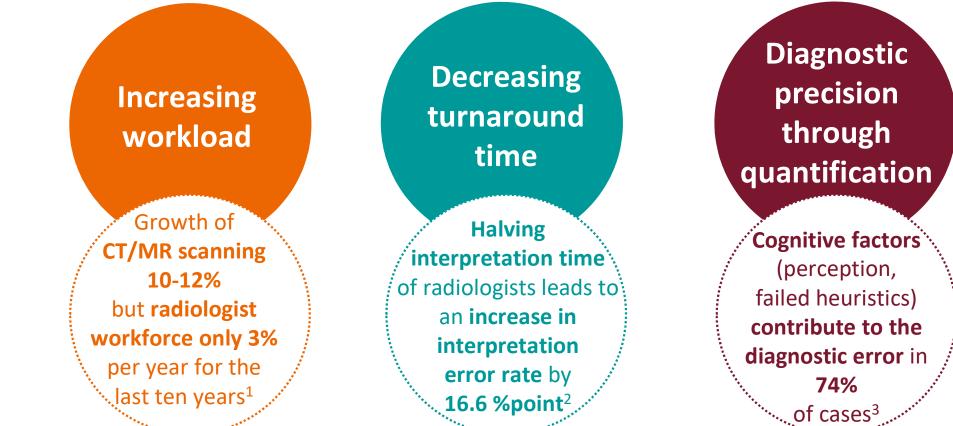
Panel 1: The added value of AI in prevention and treatment

Marcus Zimmermann-Rittereiser

COCIR Artificial Intelligence Task Force Chair

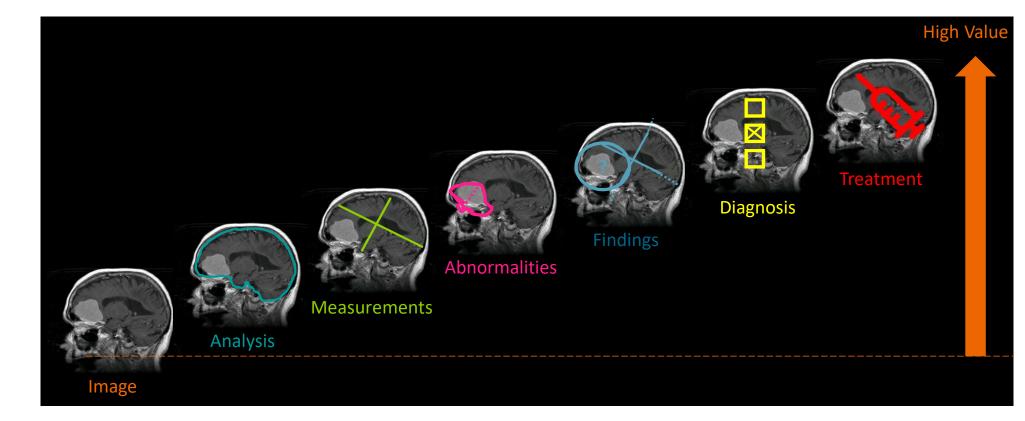
Vice President Population Health Management and Partner Management, Siemens Healthineers

Industry Perspective


- What do we mean by AI in Health and Care?
 - CADe, QIT, CDS, CADx*
- 7 Focus areas to play successfully
 - Build awareness with Innovators/early adaptors/KOLs
 - Support and enable access to massive amount of Imaging Data
 - Build a **sustainable G2M** Modell by Provisioning AI-plattforms integrated into clinicians daily routine workflow vs. stand alone applications
 - Drive adoption by impact driven (COF*-Perspective) use cases
 - Support deployment by robust Legal framework
 - Consider latest Regulatory Framework
 - Apply Ethical Framework
- Why is it important?

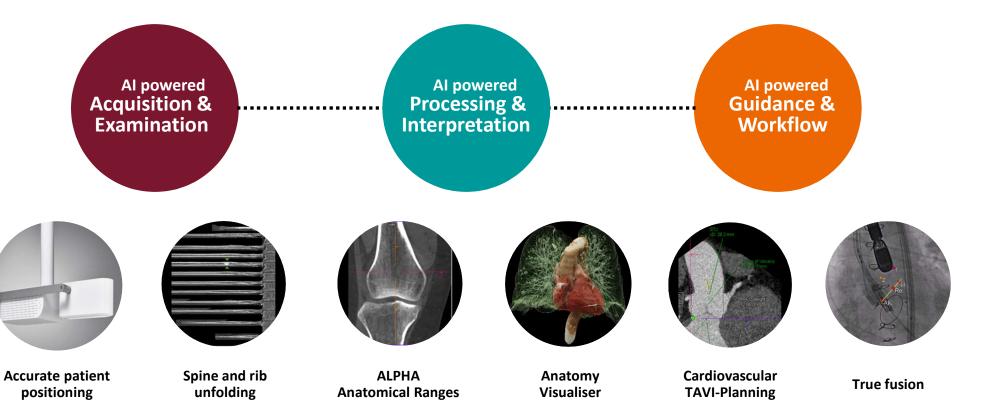
^{*} CADe= Computer Aided Detection, QIT=Quantitative Imaging Tools, CDS=Clinical Decision Support. CADx= Computer Aided Diagnosis * COF: Clinical – Operational Financial

Why is it important?



¹ The Royal College of Radiologists

² Faster Reporting Speed and Interpretation Errors: Conjecture, Evidence, and Malpractice Implications, Journal of the American College of Radiology, Volume 12, Issue 9, September 2015, Pages 894-896 ³ Cognitive and System Factors Contributing to Diagnostic Errors in Radiology American Journal of Roentgenology, 201, September 2013



AI is key enabler for Digitalization

AI adds value in every workflow step

Use Case: AI in Chest Imaging

Use Case: AI in Chest Imaging

Patient : FRO_LungLesionFU_00001 1900-01-01

Exam Date : 2006-02-28

Lung

Emphysema quantification (%LAV950) :

Whole lung	21.38%	Right lower lobe	21.85%
Left lower lobe	18.08%	Right middle lobe	23.78%
Left upper lobe	21.19%	Right upper lobe	23.15%

Lesions

Volume 2D-Recist		Left lower lobe 300.1 mm ³ 9.6 mm 10.7 mm	(-3.75) (-0.62)	Previous exam 311.8 mm ³ 9.6 mm 10.3 mm	20060116	0
Lesion 02	(1	eft lower lobe)	Previous exam	20060116	
Volume		258.3 mm ³	(+28.98)	200.3 mm ³		'
2D-Recist		11.2 mm	(+13.88)	9.8 mm		
3D-Recist		11.6 mm	(+8.94)	10.6 mm		
Lesion 03	(1	eft lower lobe)	Previous exam	20060116	
Volume		230.9 mm ³	(+30.18)	177.4 mm ³		
2D-Recist		11.6 mm	(+18.16)	9.8 mm		Ι.
3D-Recist	:	12.6 mm	(+10.48)	11.4 mm		
Heart						

Corononary Plaque : 50.7

: 1000.8 ml Heart Calcium burden : Mild

Vascular

<u>Aorta diameters (n</u>	nm)			
Sin. of Valsalba		34.3	Prox. descending	
Sinotub. junction		35.7	Mid descending	
Mid ascending		39.0	Diaphragm	
Proximal arch		35.2	Abdominal	
Mid arch		34.9		

34.7 29.4 29.4 27.8

Spine

		heig	ht (mm)	
		ant	mid	post
60116	T1	20	18	19
	T2	20	17	19
	Т3	20	16	19
	T4	19	17	20
60116	T5	19	17	21
00110	T6	20	19	22
	T7	21	19	22
	Т8	21	20	23
	Т9	21	20	22
	T10	23	20	23
⁷ mm ³	T11	24	22	26
	T12	26	24	28

Recommendations to Member States

1. Create Awareness with Innovators/KOLs

AI technologies present huge opportunities to improve quality of people's live and transform healthcare

2. Enable publicly available, disease driven, national, high quality Data sets and related framework/standards of using it

The more data the algorithm is trained on the better it gets

3. Invest in building a robust, powerful, scalable and highly secure ata infrastructure/Data Center

e.g. Super Computer with 12 PetaFLOPS (12*10¹⁵) of computing power

4. Set-Up and Drive education of Data Eng.-/Data Scientists

Building impactful AI solutions need skilled DE/DS - creating new jobs in EU